A stabilized nonconforming Nitsche's extended finite element method for Stokes interface problems

نویسندگان

چکیده

<p style='text-indent:20px;'>In this paper, a stabilized extended finite element method is proposed for Stokes interface problems on unfitted triangulation elements which do not require the align with triangulation. The problem written mixed form using nonconforming <inline-formula><tex-math id="M1">\begin{document}$ P_1 $\end{document}</tex-math></inline-formula> velocity and elementwise id="M2">\begin{document}$ P_0 pressure. Extra stabilization terms involving pressure are added in discrete bilinear form. An inf-sup stability result derived, uniform respect to mesh size id="M3">\begin{document}$ h $\end{document}</tex-math></inline-formula>, viscosity position of interface. optimal priori error estimates obtained. Moreover, errors energy norm id="M4">\begin{document}$ L^2 location Results numerical experiments presented support theoretical analysis.</p>

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stabilized Nonconforming Quadrilateral Finite Element Method for the Generalized Stokes Equations

In this paper, we study a local stabilized nonconforming finite element method for the generalized Stokes equations. This nonconforming method is based on two local Gauss integrals, and uses the equal order pairs of mixed finite elements on quadrilaterals. Optimal order error estimates are obtained for velocity and pressure. Numerical experiments performed agree with the theoretical results.

متن کامل

A stabilized nonconforming finite element method for incompressible flow

In this paper we extend the recently introduced edge stabilization method to the case of nonconforming finite element approximations of the linearized Navier-Stokes equation. To get stability also in the convective dominated regime we add a term giving L2-control of the jump in the gradient over element boundaries. An a priori error estimate that is uniform in the Reynolds number is proved and ...

متن کامل

A Convergent Nonconforming Finite Element Method for Compressible Stokes Flow

We propose a nonconforming finite element method for isentropic viscous gas flow in situations where convective effects may be neglected. We approximate the continuity equation by a piecewise constant discontinuous Galerkin method. The velocity (momentum) equation is approximated by a finite element method on div–curl form using the nonconforming Crouzeix– Raviart space. Our main result is that...

متن کامل

A stabilized mixed finite element method for Darcy–Stokes flow

This paper presents a new stabilized finite element method for the Darcy–Stokes equations also known as the Brinkman model of lubrication theory. These equations also govern the flow of incompressible viscous fluids through permeable media. The proposed method arises from a decomposition of the velocity field into coarse/resolved scales and fine/unresolved scales. Modelling of the unresolved sc...

متن کامل

A Nonconforming Generalized Finite Element Method for Transmission Problems

We obtain “quasi-optimal rates of convergence” for transmission (interface) problems on domains with smooth, curved boundaries using a non-conforming Generalized Finite Element Method (GFEM). More precisely, we study the strongly elliptic problem Pu := − ∑ ∂j(A ∂iu) = f in a smooth bounded domain Ω with Dirichlet boundary conditions. The coefficients Aij are piecewise smooth, possibly with jump...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems-series B

سال: 2022

ISSN: ['1531-3492', '1553-524X']

DOI: https://doi.org/10.3934/dcdsb.2021163